315 research outputs found

    The Clustering of Extremely Red Objects

    Get PDF
    We measure the clustering of Extremely Red Objects (EROs) in ~8 deg^2 of the NOAO Deep Wide Field Survey Bo\"otes field in order to establish robust links between ERO z~1.2 and local galaxy z<0.1 populations. Three different color selection criteria from the literature are analyzed to assess the consequences of using different criteria for selecting EROs. Specifically, our samples are (R-K_s)>5.0 (28,724 galaxies), (I-K_s)>4.0 (22,451 galaxies) and (I-[3.6])>5.0 (64,370 galaxies). Magnitude-limited samples show the correlation length (r_0) to increase for more luminous EROs, implying a correlation with stellar mass. We can separate star-forming and passive ERO populations using the (K_s-[24]) and ([3.6]-[24]) colors to K_s=18.4 and [3.6]=17.5, respectively. Star-forming and passive EROs in magnitude limited samples have different clustering properties and host dark halo masses, and cannot be simply understood as a single population. Based on the clustering, we find that bright passive EROs are the likely progenitors of >4L^* elliptical galaxies. Bright EROs with ongoing star formation were found to occupy denser environments than star-forming galaxies in the local Universe, making these the likely progenitors of >L^* local ellipticals. This suggests that the progenitors of massive >4L^* local ellipticals had stopped forming stars by z>1.2, but that the progenitors of less massive ellipticals (down to L^*) can still show significant star formation at this epoch.Comment: 19 pages, 16 figures, 4 tables, Accepted to ApJ 27th November 201

    Convergent metabotropic signalling pathways inhibit SK channels to promote synaptic plasticity in the hippocampus

    Get PDF
    Hebbian synaptic plasticity at hippocampal Schaffer collateral synapses is tightly regulated by postsynaptic SK channels that restrict NMDA receptor activity. SK channels are themselves modulated by G-protein-coupled signalling pathways, but it is not clear under what conditions these are activated to enable synaptic plasticity. Here, we show that muscarinic M1 receptor (M1R) and type 1 metabotropic glutamate receptor (mGluR1) signalling pathways, which are known to inhibit SK channels and thereby disinhibit NMDA receptors, converge to facilitate spine calcium transients during the induction of long-term potentiation (LTP) at hippocampal Schaffer collateral synapses onto CA1 pyramidal neurons of male rats. Furthermore, mGluR1 activation is required for LTP induced by reactivated place cell firing patterns that occur in sharp wave ripple events during rest or sleep. In contrast, M1R activation is required for LTP induced by place cell firing patterns during exploration. Thus, we describe a common mechanism that enables synaptic plasticity during both encoding and consolidation of memories within hippocampal circuits

    Localized Ca2+ uncaging reveals polarized distribution of Ca2+-sensitive Ca2+ release sites: mechanism of unidirectional Ca2+ waves

    Get PDF
    Ca2+-induced Ca2+ release (CICR) plays an important role in the generation of cytosolic Ca2+ signals in many cell types. However, it is inherently difficult to distinguish experimentally between the contributions of messenger-induced Ca2+ release and CICR. We have directly tested the CICR sensitivity of different regions of intact pancreatic acinar cells using local uncaging of caged Ca2+. In the apical region, local uncaging of Ca2+ was able to trigger a CICR wave, which propagated toward the base. CICR could not be triggered in the basal region, despite the known presence of ryanodine receptors. The triggering of CICR from the apical region was inhibited by a pharmacological block of ryanodine or inositol trisphosphate receptors, indicating that global signals require coordinated Ca2+ release. Subthreshold agonist stimulation increased the probability of triggering CICR by apical uncaging, and uncaging-induced CICR could activate long-lasting Ca2+ oscillations. However, with subthreshold stimulation, CICR could still not be initiated in the basal region. CICR is the major process responsible for global Ca2+ transients, and intracellular variations in sensitivity to CICR predetermine the activation pattern of Ca2+ waves

    A powerful intervention: general practitioners' use of sickness certification in depression

    Get PDF
    &lt;b&gt;Background&lt;/b&gt; Depression is frequently cited as the reason for sickness absence, and it is estimated that sickness certificates are issued in one third of consultations for depression. Previous research has considered GP views of sickness certification but not specifically in relation to depression. This study aimed to explore GPs views of sickness certification in relation to depression.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methods&lt;/b&gt; A purposive sample of GP practices across Scotland was selected to reflect variations in levels of incapacity claimants and antidepressant prescribing. Qualitative interviews were carried out between 2008 and 2009.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Results&lt;/b&gt; A total of 30 GPs were interviewed. A number of common themes emerged including the perceived importance of GP advocacy on behalf of their patients, the tensions between stakeholders involved in the sickness certification system, the need to respond flexibly to patients who present with depression and the therapeutic nature of time away from work as well as the benefits of work. GPs reported that most patients with depression returned to work after a short period of absence and that it was often difficult to predict which patients would struggle to return to work.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions&lt;/b&gt; GPs reported that dealing with sickness certification and depression presents distinct challenges. Sickness certificates are often viewed as powerful interventions, the effectiveness of time away from work for those with depression should be subject to robust enquiry

    The Average Physical Properties and Star Formation Histories of the UV-Brightest Star-Forming Galaxies at z~3.7

    Full text link
    [Abridged] We investigate the average physical properties and star formation histories of the most UV-luminous star-forming galaxies at z~3.7. Our results are derived from analyses of the average spectral energy distributions (SEDs), constructed from stacked optical to infrared photometry, of a sample of the 1,902 most UV-luminous star-forming galaxies found in 5.3 square degrees of the NOAO Deep Wide-Field Survey. We bin the sample according to UV luminosity, and find that the shape of the average SED in the rest-frame optical and infrared is fairly constant with UV luminosity: i.e., more UV luminous galaxies are, on average, also more luminous at longer wavelengths. In the rest-UV, however, the spectral slope (measured at 0.13-0.28 um) rises steeply with the median UV luminosity from -1.8 at L L* to -1.2 in the brightest bin (L~4-5L*). We use population synthesis analyses to derive the average physical properties of these galaxies and find that: (1) L_UV, and thus star formation rates (SFRs), scale closely with stellar mass such that more UV-luminous galaxies are also more massive; (2) The median ages indicate that the stellar populations are relatively young (200-400 Myr) and show little correlation with UV luminosity; and (3) More UV-luminous galaxies are dustier than their less-luminous counterparts, such that L~4-5L* galaxies are extincted up to A(1600)=2 mag while L L* galaxies have A(1600)=0.7-1.5 mag. Based on these observations, we argue that the average star formation histories of UV-luminous galaxies are better described by models in which SFR increases with time in order to simultaneously reproduce the tight correlation between the observed SFR and stellar mass, and the universally young ages of these galaxies. We demonstrate the potential of measurements of the SFR-M* relation at multiple redshifts to discriminate between simple models of star formation histories.Comment: 14 pages, 7 figures. Accepted for publication in Astrophysical Journa

    Spitzer Photometry of WISE-Selected Brown Dwarf and Hyper-Luminous Infrared Galaxy Candidates

    Get PDF
    We present Spitzer 3.6 and 4.5 μ\mum photometry and positions for a sample of 1510 brown dwarf candidates identified by the WISE all-sky survey. Of these, 166 have been spectroscopically classified as objects with spectral types M(1), L(7), T(146), and Y(12); Sixteen other objects are non-(sub)stellar in nature. The remainder are most likely distant L and T dwarfs lacking spectroscopic verification, other Y dwarf candidates still awaiting follow-up, and assorted other objects whose Spitzer photometry reveals them to be background sources. We present a catalog of Spitzer photometry for all astrophysical sources identified in these fields and use this catalog to identify 7 fainter (4.5 μ\mum \sim 17.0 mag) brown dwarf candidates, which are possibly wide-field companions to the original WISE sources. To test this hypothesis, we use a sample of 919 Spitzer observations around WISE-selected high-redshift hyper-luminous infrared galaxy (HyLIRG) candidates. For this control sample we find another 6 brown dwarf candidates, suggesting that the 7 companion candidates are not physically associated. In fact, only one of these 7 Spitzer brown dwarf candidates has a photometric distance estimate consistent with being a companion to the WISE brown dwarf candidate. Other than this there is no evidence for any widely separated (>> 20 AU) ultra-cool binaries. As an adjunct to this paper, we make available a source catalog of \sim 7.33 ×105\times 10^5 objects detected in all of these Spitzer follow-up fields for use by the astronomical community. The complete catalog includes the Spitzer 3.6 and 4.5 μ\mum photometry, along with positionally matched BB and RR photometry from USNO-B; JJ, HH, and KsK_s photometry from 2MASS; and W1W1, W2W2, W3W3, and W4W4 photometry from the WISE all-sky catalog

    Coordinated activation of distinct Ca<sup>2+</sup> sources and metabotropic glutamate receptors encodes Hebbian synaptic plasticity

    Get PDF
    At glutamatergic synapses, induction of associative synaptic plasticity requires time-correlated presynaptic and postsynaptic spikes to activate postsynaptic NMDA receptors (NMDARs). The magnitudes of the ensuing Ca2+ transients within dendritic spines are thought to determine the amplitude and direction of synaptic change. In contrast, we show that at mature hippocampal Schaffer collateral synapses the magnitudes of Ca2+ transients during plasticity induction do not match this rule. Indeed, LTP induced by time-correlated pre- and postsynaptic spikes instead requires the sequential activation of NMDARs followed by voltage-sensitive Ca2+ channels within dendritic spines. Furthermore, LTP requires inhibition of SK channels by mGluR1, which removes a negative feedback loop that constitutively regulates NMDARs. Therefore, rather than being controlled simply by the magnitude of the postsynaptic calcium rise, LTP induction requires the coordinated activation of distinct sources of Ca2+ and mGluR1-dependent facilitation of NMDAR function
    corecore